

SEN6x - Datasheet

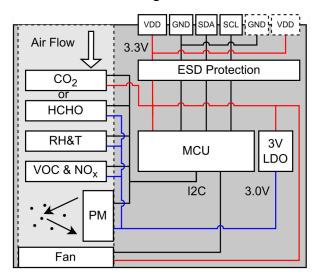
3"Generation Environmental Sensor Node for Air Quality Applications

Highlights

- PM, RH&T, VOC, NOx, CO2/HCHO sensing platform
- Fast & easy integration
- 10 years dust-free Patented Sheath Flow technology
- Fully calibrated digital output
- One driver for up to 9 data signals
- Integrated compensation algorithms
- Ready for California Title 241, RESET®2 and WELL Building Standard™3

The SEN6x sensor module family is an air quality platform that combines critical parameters such as particulate matter, relative humidity, temperature, VOC, NOx and either CO2 or formaldehyde, all in one compact package. The modules are a result of Sensirion's extensive experience in environmental sensing and offer the best possible performance for each parameter, a superior lifetime and an unrivaled form factor. The combination of all measurement parameters, together with all relevant algorithms in one device simplifies the integration, streamlines the supply chain, and allows for a fast time to market with the best performance.

Product Overview


Product Variant	Sensor Signals
SEN60	PM
SEN63C	PM, RH & T, CO2
SEN65	PM, RH & T, VOC, NOx
SEN66	PM, RH & T, VOC, NOx, CO2
SEN68	PM, RH & T, VOC, NOx, HCHO

See full product list on page 42

Scan me to provide feedback

Functional Block Diagram

¹ 2022 California Building Energy Efficiency Standards for Residential and Nonresidential Buildings ²WELL V2 pilot, 04 2022

3

1 Disclaimer

This is a preliminary datasheet; all specifications are to be understood as target specifications and can change without notice.

2 Environmental Sensor Node Specifications

For section **2.1** to **2.6**, default conditions of continuous measurement-mode, 25 °C, 50 %RH (relative humidity), 1013 mbar, and 3.3 V supply voltage apply, unless stated otherwise.

Different products within the SEN6x family offer different sensing capabilities. Specifications in the following only apply if the parameter is present in the selected product.

2.1 Sensor Module Specifications

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68

Parameter	Conditions	Value	Units
Sampling interval	-	1 □ 0.03	S
Sensor startup time (Time after power for until 20 started)	-	100	ms
Lifetime4			
Acoustic emission level	24 h/day operation5	> 106	years
	0.2 m	< 24	dB(A)
Long term acoustic emission level drift	0.2 m -	+0.5	dB(A) / year
Weight		20 ± 10 %	g

Table 1. Sensor Module Specifications

⁴ Lifetime is based on mean-time-to-failure (MTTF) calculation. Lifetime might vary depending on different operating conditions. For more details refer to "Sensor Specification Statement – Rev.2" [4]

⁵ Excluding formal dehyde specifications, formal dehyde lifetime limited to > 6 years

2.2 Particulate Matter Specifications

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68

Parameter	Co	onditions	Value	Units
Mass concentration specified range		-	0 to 1'000	μg/m3
	F	PM1.0	0.3 to 1.0	μm
Mass concentration size range	F	PM2.5	0.3 to 2.5	μm
Mass concentration size range		PM4	0.3 to 4.0	μm
	ſ	PM10	0.3 to 10.0	μm
Mass concentration precision ^{7,10} for PM1	0 to 1	L00 μg/m3	_5 μg/m ³A	ND 5 % m.v.
and PM2.58	100 to	1000 μg/m3	□10	% m.v.
Mass concentration precision _{7,10} for PM4,		L00 μg/m3	25	μg/m ³
PM109		1000 μg/m3	□25	% m.v.
Maximum long-term mass concentration		L00 μg/m3	□1.25	μg/m3 / year
precision limit drift10	100 to	1000 μg/m3	□1.25	% m.v. / year
Typical start-up time11		-	30	S
Sensor output characteristics	PM2.5 mass concentration		DustTrak	ated to TSI ™ DRX 8533 ent Mode
Additional T-dependent mass precision Laser wavelength	temperature difference to 25°C typ.		□0.5	% m.v. / °C
(IEC 60825-1:2014 and DIN EN 60825-1:2022 Class 1)	typ.		850	nm

Table 2. Particulate matter sensor specifications. '% m.v.' means '% of measured value'.

2.2.1 Laser Safety

This product contains a Class 3R laser source. With its housing, it is a laser class 1 product according to IEC 60825-1:2014 and DIN EN 60825-1:2022. Do not open for servicing.

Fine more details refer to "Sensirion Environmental, Node Sensor Specification Statement at Rev.2" [4]

⁷ Also referred to as "between-parts wrightion" or "device to device variation" or eference instrument is verified in end-tests for every sensor after calibration.

⁹ PM4 and PM10 output values are calculated based on distribution profile of all measured particles.

2.3 Temperature and Humidity Specifications

Applies to: SEN63C, SEN65, SEN66, SEN68

Parameter	Conditions		Units			
Parameter	Conditions	Min	Тур.	Max	Offics	
Compensated outputs13	_		Tempera	ture	°C	
Compensated outputs13	-		Relative Humidity			
Accuracy temperature	@ 15-30 °C, 50 %RH		□0.45	±0.7	°C	
Repeatability temperature	@ 25 °C, 50 %RH		0.1		°C	
Response time temperature14	@ 25 °C, 50 %RH, □63%		<60		S	
Accuracy relative humidity	@ 25 °C, 30-70 %RH		□4.5	±6	%RH	
Repeatability relative humidity	@ 25 °C, 50 %RH		□1		%RH	
Response time relative humidity15	@ 25 °C, 50 %RH, □63%		<20		S	

Table 3. Temperature and humidity specifications

¹² For the definition of the typical and max. accuracy tolerance, please refer to the document "Sensirion Humidity Sensor Specification Statement" [5].

¹³ Self-heating of the module is compensated according to the application note "Temperature Acceleration and Compensation Instructions for SEN6x" [2].

¹⁴ For a step from 75% Rtp 6525 FRTA for a pare module with default acceleration and offset parameters.

2.4 VOC and NOx Specifications

Applies to: SEN65, SEN66, SEN68

Parameter	Comments	V	alues		Units	
Parameter	Comments		Min.	Тур.16	Max.	VOC Index points
Outroot along the	VOC Index		1	_	500	NOx Index points
Output signals	NOx Index		1	_ 	500	VOC Index points
Device-to-device	VOC Index17		-	<u>₹‡15</u>	-	or % VOC Index m.v. (the larger) NOx Index points
variation	NOx Index17		_	₹ \$9	_	% NOx Index m.v. (the larger) VOC Index points or % VOC Index m.v.
Repeatability	VOC Index17		-	₹ ±§	_	(the larger) NOx Index m.v. or NOx Index m.v. (the larger)
	NOx Index17		_	<i>≷</i> ±10 <10	_	S
	Changing concentration	τ63	_		_	
Response time	from 5 to 10 ppm of ethanol, at sampling interval of 1 s	τ90	_	<30	_	S
Switch-on	Time until reliably detect events18	ing	_	<60 <1	_	s h
behavior	Time until specifications in	this	VOC Index	<6	_	h
	table are met		NOx Index			

Table 4. VOC and NOx sensing specifications in zero air (considered as clean air for indoor air quality applications). All concentrations refer to ethanol as test gas.

1

^{1. 95%} of the sensors will be within the typical tolerance corresponding to 29 assuming a pormal distribution for > 100 sensors.
6. Signal change author obsevent of 5 000 to 10 000 ppp of enable of 01 10 00 ppp of NO2 is three times larger than raw signals

drift, without this event during the same duration.

2.5 CO2 Specifications

2.5.1 CO2 Specifications - SEN66

Applies to: SEN66 only

Parameter	Conditions	Value	Units
CO2 output range ¹⁹	-	0 to 40'000	ppm
	400 ppm to 1'000 ppm	±(50 + 2.5 % of reading)	ppm
CO2 measurement accuracy	1'001 ppm to 2'000 ppm	±(50 + 3 % of reading)	ppm
	2'001 ppm to 5'000 ppm	±(40 + 5 % of reading)	ppm
Repeatability	typ.	±10	ppm
Response time21	τ63%, typical, step change 400 – 2'000 ppm	60	S
Additional accuracy drift per year, starting after five years22	400 to 5000 ppm, typ.	±(5 + 0.5 % of reading)	ppm

Table 5. CO2 specifications

2.5.2 CO2 Specifications - SEN63C

Applies to: SEN63C only

Parameter	Conditions	Value	Units
CO2 output range	-	0 to 32'000	ppm
CO₂measurement accuracy23	400 ppm to 5'000 ppm	±(100 + 10 % of reading)	ppm
Response time24	τ63%, typ.	20	s

Table 6. CO2 specifications

Expartifeton Qa.gon-pretiations remailed than 400 particles nativity the 25% warrant the segretary withing, Sifipping and long-term drift

can impact sensor accuracy. Accuracy can be restored by performing forced recalibration (FRC) or maintained by sensor operation with automatic self-calibration (ASC) enabled using default parameters and weekly exposure to air with CO2 concentrations at 400 ppm.

² Besponse time depends on design in and environment of the sensor in the final application of the sensor operation

with ASC enabled using default parameters and weekly exposure to air with CO2 concentrations at 400 ppm. Maximum additional accuracy drift per year starting after five years estimated from stress tests is \pm (5 ppm + 2% of reading). Stronger drift may occur if the sensor is not handled according to its handling instructions.

²³⁴ And For Achieves of the airtight and environment of the sensor in the final application.

2.6 Formaldehyde Specifications

Applies to: SEN68

Parameter	Conditions	Value	Units
Formaldehyde concentration measurement range	-	0 to 1000	ppb
Typical Accuracy	0 to 200 ppb HCHO in clean air	□20 ppb or □20% of measured value, whichever is larger	-
Accuracy in VOC background	100 ppb HCHO in background of 5 ppm of ethanol	+35 to -20	ppb
Cross-sensitivity to ethanol	Tested in 5 ppm ethanol	≤0.3	%
Resolution	Time until concer output io	0.1	ppb
Start-up time	Time until sensor output is within specifications Standard conditions as	≤5	min
Lifetime	defined in section 2	≥6	years

Table 7. Formaldehyde specifications

2.7 Recommended and Absolute Maximum and Minimum Operating and Storage Conditions

The SEN6x family contains different sensing components with different operating and storage ranges. Make sure to select the appropriate table for the selected product.

2.7.1 SEN60 Table 8 and **Figure 1** show the recommended operating and storage conditions in which all the sensing

components of the SEN60 show the best performance, as well as absolute maximum/minimum conditions which must not be exceeded.

Exposure to conditions outside the recommended range may temporarily reduce sensor performance (PM precision). Exposure to conditions outside the absolute maximum/minimum range may lead to permanent damage to the device.

The sensor must not be exposed towards condensing conditions at any time.

Condition	Parameter	Recommended		Ма	Short-Term ximum/Minimum25	Unit
		Min.	Max.	Min.	Max.	
Our anatina a canaditi ana	Temperature	10	40	-10	60	°C
Operating conditions	Relative humidity	20	80	0	95 (non-condensing)	% RH
	Temperature	10	30	-40	70	°C
Storage conditions	Relative Humidity	20	60	0	95 (non-condensing)	% RH

Table 8. Recommended and absolute maximum/minimum operating and storage conditions for the SEN60

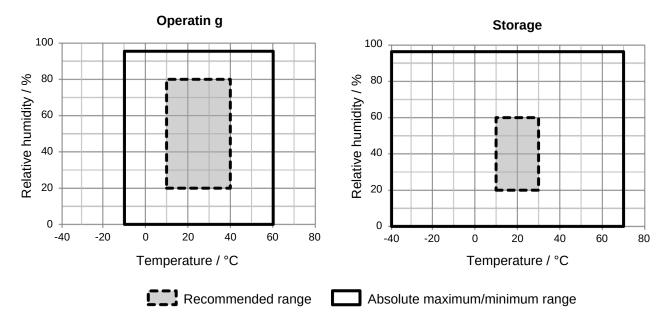
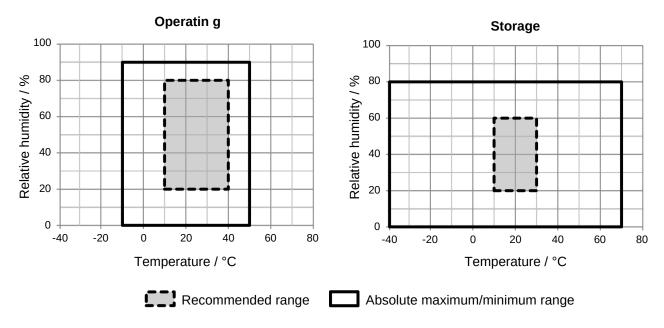


Figure 1. Recommended and absolute maximum/minimum operating and storage conditions for the SEN60

²⁵ Short-term storage refers to temporary conditions, e.g., transport.

2.7.2 SEN63C, SEN65 and SEN66 Table 9 and **Figure 2** show the recommended operating and storage conditions in which all the sensing

components of the SEN63C, SEN65 and SEN66 show the best performance, as well as absolute maximum/minimum conditions which must not be exceeded. Gas sensing specifications are guaranteed only when the SEN63C, SEN65 and SEN66 are operated and stored under the recommended conditions given in **Table 9** and **Figure 2**.


Exposure to conditions outside the recommended range may temporarily reduce sensor performance (reversible RH drift, reduced RH, T, VOC, NOx, CO2, PM precision). Exposure to conditions outside the

absolute

maximum/minimum range may lead to permanently reduced sensor performance (VOC and NOx sensitivity drift) or cause permanent damage to the device.

The sensor must not be exposed towards condensing conditions at any time. Short Recommended Term- Maximum/Minimum26 Condition Parameter Unit Min. Max. Min. Max. 10 40 -10 50 °C Temperature Operating conditions 80 20 0 % RH Relative humidity 90 (non-condensing) Temperature 10 30 -40 70 °C Storage conditions **Relative Humidity** 20 60 0 80 (non-condensing) % RH

Table 9. Recommended and absolute maximum/minimum operating and storage conditions for the SEN63C, SEN65 and SEN66

Figure 2. Recommended and absolute maximum/minimum operating and storage conditions for the SEN63, SEN65 and SEN66

²⁶ Short-term storage refers to temporary conditions, e.g., transport.

2.7.3 SEN68 Table 10 and **Figure 3** show the recommended operating and storage conditions in which all the sensing

components of the SEN68 show the best performance, as well as absolute maximum/minimum conditions which must not be exceeded. Gas sensing specifications are guaranteed only when the SEN68 is operated and stored under the recommended conditions given in **Table 10** and **Figure 3**.

Exposure to conditions outside the recommended range may temporarily reduce sensor performance (reversible RH drift, reduced RH, T, VOC, NOx, HCHO, PM precision). Exposure to conditions outside the absolute maximum/minimum range may lead to permanently reduced sensor performance (VOC, NOx and HCHO sensitivity drift) or cause permanent damage to the device.

The sensor must not be exposed towards condensing conditions at any time.

Condition	Parameter	Recomn	Recommended		Short-Term ximum/Minimum27	Unit
		Min.	Max.	Min.	Max.	
Our a mating of a small till a man	Temperature	10	40	0	50	°C
Operating conditions	Relative humidity	20	80	15	90 (non-condensing)	% RH
	Temperature	10	30	-20	70	°C
Storage conditions	Relative Humidity	30	60	10	80 (non-condensing)	% RH

Table 10. Recommended and absolute maximum/minimum operating and storage conditions for the SEN68

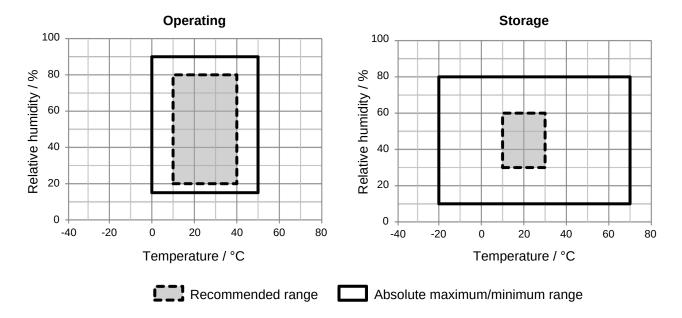


Figure 3. Recommended and absolute maximum/minimum operating and storage conditions for the SEN68

 $^{^{\}rm 27}$ Short-term storage refers to temporary conditions, e.g., transport.

3 Electrical Specifications

3.1 Electrical Characteristics

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68

Supply voltage (VDD) - 3.1528 3.3 ≥100 Hz SEN6x Supply voltage peak to peak ripple	3.45	V
Supply voltage neak to neak ripple	00	
SEN00 - -	30	mV
(VDD,pp) <100 Hz SEN6x	100	
SEN60 3.3		
SEN63C 3.3		
Idle Mode (first 10 seconds) SEN65 4.6		
SEN66 4.6		
SEN68 4.6		
SEN60 - 3.3	-	
SEN63C - 3.3	-	
Average supply current ²⁹ Idle Mode (after first 10 seconds) SEN65 - 3.3	-	
SEN66 - 3.3	-	
SEN68 - 3.3	-	
SEN60 - 75	90	mA
SEN63C - 80	100	
Measurement-Mode (after SEN65 - 80	100	
first 60 seconds) SEN66 - 90	110	
SEN68 - 75	100	
SEN60 - 130	190	
SEN63C - 140	200	
Peak supply current Measurement mode SEN65 - 140	200	
(pulse width of 2 ms) SEN66 - 300	350	
SEN68 - 140	200	
SDA/SCL pin input high voltage (VIH)	_	
SDA/SCL pin input low voltage (VIL)	0.3*VDD	V
SDA pin output low voltage (VOH)	0.45	-

Table 11. Electrical Specifications at 25°C

2

² Minimum voltage including ripples.

⁸ Averaged over 5 seconds

3.2 Absolute Maximum Ratings

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68 Stress levels beyond those listed in **Table 12** may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions cannot be guaranteed. Exposure to the

Parameter	Min	Max	Unit
Supply voltage VDD	0	3.6	.,
1/O pins (SDA, SCL)	-0.3	5.5	V
Max. current on any I/O pin	-20	20	mA

absolute maximum rating conditions for extended periods may affect the reliability of the device.

Table 12. Absolute minimum and maximum ratings

3.3 ESD / EMC Ratings

3.3.1 Immunity

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68

Description	Standard	Rating
Electrostatic Discharge	IEC 61000-4-2	±4 kV contact, ±4 kV air
Power-Frequency Magnetic Field Radio-	IEC 61000-4-8	30 A/m, 50 Hz and 60 Hz
Frequency EM-Field AM-modulated Radio-	IEC 61000-4-3	80 MHz – 1000 MHz, 3 V/m, 80% AM @1 kHz
Frequency EM-Field AM-modulated	IEC 61000-4-3	1.4 GHz – 6 GHz, 3 V/m, 80% AM @1 kHz

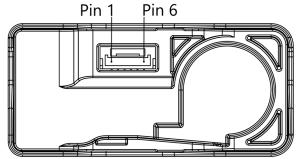
Table 13. ESD and EMC immunity

3.3.2 Emission

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68

Description	Standard	Rating
Emission in SAC for 30MHz to 230MHz	IEC/CISPR 16	40 dB(μV/m) QP @3m
Emission in SAC for 230MHz to 1000MHz	IEC/CISPR 16	47 dB(μV/m) QP @3m

Table 14. EMC emission


4 Hardware Interface Description

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68

The sensor is equipped with a serial communication interface. In **Table 16**, a description of the pin layout is given.

Part	Description
Connector sensor side	ACES 51451-0060N-001
Connector cable side	Compatible with ACES 51452- 006H0H0√061 (e.g., 1SJ GHR-06V-S
section area Cable length	

Table 15. SEN6x physical interface

Figure 4. Pin layout. The communication interface connector (ACES 51451-0060N-001) is located at the side of the sensor adjacent to the air outlet.

Pin	Name	Description	Comments
1	VDD	Supply voltage	-
2	GND	Ground	-
3	SDA	Serial data input/output	TTL 5V compatible
4	SCL	Serial clock input	TTL 5V compatible
5	GND	Ground or NC	Pins 2 and 5 are connected internally
6	VDD	Supply voltage or NC	Pins 1 and 6 are connected internally

Table 16. SEN6x pin assignment

4.1 I2C Interface Circuit

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68

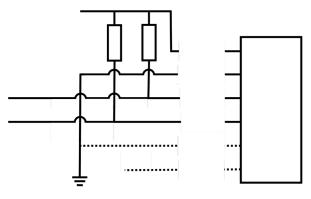


Figure 5. I2C application circuit

Both SCL and SDA lines are open drain I/Os. They must be connected to external pull-up resistors (e.g. Rp = $10 \text{ k}\Omega$).

Some considerations should be made about the use of the 12C interface. I2C was originally designed to two chips on a PCB. When the sensor is connected to the main PCB via a cable, particular attention must be paid to electromagnetic interference and crosstalk. Use as short as possible (< 10 cm) and/or well shielded connection cables.

For detailed information on the I2C protocol, refer to NXP I2C-bus specification [1].

5 Digital Interface Description

5.1 Operation Modes

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68

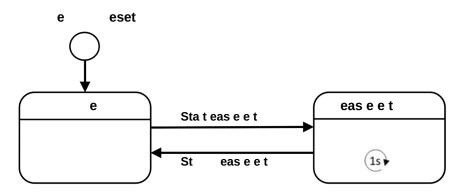


Figure 6. SEN6x operating modes

Idle:

- The module is in Idle Mode after power on or reset.
- Most of the internal electronics switched off /reduced power consumption.
- Fan and laser are switched off.
- The module is ready to receive and process any command.

Measurement:

- All electronics switched on / max. power consumption.
- The measurement is running, and the module is continuously processing measurement data.
- New readings are available every second.

5.2 Temperature Compensation with STAR Engine

Applies to: SEN63C, SEN65, SEN66, SEN68 By default, the temperature and humidity outputs from the sensor are compensated for the modules self-

heating. If the module is designed into a device, the temperature compensation might need to be adapted to incorporate the change in thermal coupling and self-heating of other device components. A guide to achieve optimal performance, including references to mechanical design-in examples can be found in the app note "Temperature Acceleration and Compensation Instructions for SEN6x" [2].

5.3 I2C Interface Settings

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68

Property	SEN60	SEN6x		
I2C Address	0x6C (7-bit)	0x6B (7-bit)		
Max. Speed	100kbit/s (standard mode)			
Clock stretching	Not used, the sensor NACKS's when busy with processing			

Table 17. I2C interface settings

5.4 Power-Up and Communication Start

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68 The sensor starts powering-up after reaching the power-

up threshold voltage VDD, min and will take up to the

maximum of the sensor startup time, specified in **Table 1**, to enter the idle state. Once the idle state has been reached, it is ready to receive commands from the controller. Any incoming command will be acknowledged (address header and all data bytes). After the stop condition, the sensor validates and processes the received data. During this time, the sensor does not acknowledge any I2C requests (address header will be NACK'd). As soon as the command is fully processed, the I2C interface becomes ready again. The controller can then either read the result with a read operation or send the next command with a write operation.

The processing time depends on the sent command, see **Table 18**. The specified timings are absolute maximum

values. If you want to read the response data or send the next command as soon as possible (i.e. without waiting the maximum specified processing time), you could send the next address header multiple times until the sensor acknowledges it.

5.5 Data Type & Length

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68 Data sent to and received from the sensor consists of a sequence of 16-bit words, most significant byte (MSB)

transmitted first. Each word is succeeded by an 8-bit CRC. See **Figure 7** for more detail. In write direction it is mandatory to transmit the checksum. In read direction it is up to the controller to decide whether to process the checksum.

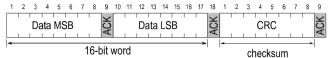


Figure 7. Data type structure with 16-bit word and 8-bit CRC Please note that the CRC is used only for the 16-

bit data packets. The 16-bit command ID itself already contains

a 3-bit CRC and therefore no CRC must be appended to it as seen in Figure 8. Each command ID is represented

by a 4-digit Hex. Code as seen in Table 18.

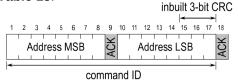
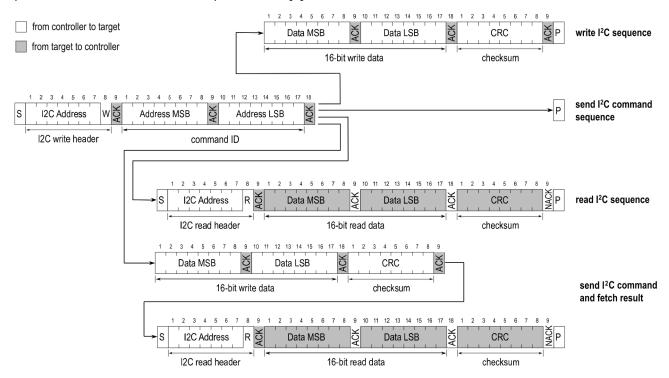



Figure 8. Command ID with inbuilt 3-bit CRC

5.6 Command Sequence Types

The SEN6x features four different I2C command sequence types: write I2C sequences, send I2C command sequence, read I2C sequences and send & fetch I2C sequence. **Figure 9** illustrates how the I2C communication for the different sequence types is built up. For detailed information on the I2C protocol, refer to NXP I2C-bus specification [1].

Figure 9. Command sequence types: write sequence, send command sequence, read sequence and send command and fetch result sequence.

After issuing read sequence commands and sending the ACK Bit, the sensor needs the *execution time* (see **Table 18**) to respond to the I2C read header with an ACK bit. Hence, it is required to wait the command execution time before issuing the read header. Commands must not be sent while a previous command is being processed.

5.7 I2C Commands

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68

Note: SEN60 and SEN68 specific commands will be added in a future update

			Execu	ution	Applicable to				
Comm and ID	Command	12C Seguence Type (See Section 5.6)		During Measur.	SEN60	SEN63C	SEN65	SEN66	SEN68
0x0021	Start Continuous Measurement	send	50	no	-	\	V	V	V
0x0104	Stop Measurement	send	1100	yes	-	V	V	V	V
0x0202	Get Data Ready	read	20	yes	-	V	V	V	V
0x0300	Read Measured Values SEN66	read	20	yes	-		- ,	V .	- ,
	Read Number Concentration Values	read	20	yes	-	V	√	V .	-
	Read Measured Raw Values SEN66	read	20	yes	-	-,	V	V .	V
1	Start Fan Cleaning	send	20	no	-	\	V	√	V
	Set Temperature Offset Parameters	write	20	yes	-	V	V	√	V
	Get VOC Algorithm Tuning Parameters	read	20	no	-	_		√	
	Set VOC Algorithm Tuning Parameters	write	20	no	-	-	V V	\checkmark	
	Get NOx Algorithm Tuning Parameters	read	20	no	-	_	V	V	$\overline{}$
0x60E1	Set NOx Algorithm Tuning Parameters	write	20	no	-	-	V V	\checkmark	
0x6100	Set Temperature Acceleration Parameters	write	20	no	-	V	V	V	
	Get VOC Algorithm State	read	20	yes	-	-	\vee	\checkmark	\checkmark
0x6181	Set VOC Algorithm State	write	20	yes	-	-	V V	V	
0x6707	Perform Forced CO2 Recalibration	send and fetch	500	no	-	\vee	_	V	_
0x6711	Get CO2 Sensor Automatic Self Calibration i	read	20	no	-	\vee	_	\checkmark	
0x6711	Set CO2 Sensor Automatic Self Calibration v	vrite	20	no	-	\vee	_	\checkmark	_
0×6720	Get Ambient Pressure	read	20	yes	-	V	_	V	
	Sets Ambient Pressure	write	20	yes	-	V	_	V	_
	Get Sensor Altitude	read	20	yes	-	\vee	_	\checkmark	
1	Set Sensor Altitude	write	20	yes	-	\vee	-	\vee	_
1	Activate SHT Heater	send	1300	no		V	V	V	\vee
1	Get Product Name	read				V	V	V	$\overline{}$
	Get Serial Number	read	20	yes		V	V	V	-
	Get Version	read	20	yes		V	V	V	
	Read Device Status	_	20	yes			V	V	lacksquare
		read	20	yes			V	V	<u></u>
	Read And Clear Device Status	read	20	yes	_	V	V	V	
UXD3U4	Device Reset	send	20	yes					

Table 18. Command overview. The column ('During measurement') indicates whether the command can be executed while a measurement is running.

5.7.1 Start Continuous Measurement Applies to: SEN63C, SEN65, SEN66, SEN68 Description: Starts a

continuous measurement. After starting the measurement, it takes some time (\sim 1.1s) until the first measurement results are available. You could poll with the command **Get Data Ready** to check when the results are ready to read.

This command is only available in idle mode. If the device is already in any measure mode, this command has no effect.

Start Continuous Measurement		
Command ID	0x0021	
Post Processing Time	50 ms	
Max. RX Data With CRC	0 Bytes	
TX Data	None	
RX Data	None	

Table 19. Start continuous measurement I2C command description

5.7.2 Stop Measurement

Applies to: SEN63C, SEN65, SEN66, SEN68

Description: Stops the measurement and returns to idle mode. After sending this command, wait at least 1000 ms before starting a new measurement.

If the device is already in idle mode, this command has no effect.

Stop Measurement				
Command ID	0x0104			
Post Processing Time	1100 ms			
Max. RX Data With CRC	0 Bytes			
TX Data	None			
RX Data	None			

Table 20. Stop measurement I2C command description

5.7.3 Get Data Ready

Applies to: SEN63C, SEN65, SEN66, SEN68

Description: This command can be used to check if new measurement results are ready to read. The data ready flag is automatically reset after reading the measurement values.

Get Data Ready					
Command ID	0x0202	0x0202			
Read Delay	20 ms	20 ms			
Post Processing Time	0 ms				
Max. RX Data With CRC	3 Bytes	3 Bytes			
TX Data	None				
	Byte #		Description		
	0		Padding: byte, always 0x00.		
			Data Ready: bool		
RX Data	1		True (0x01) if data is ready, False (0x00) if not. When no measurement is running, False will be returned.		
			CRC for the previous two bytes.		
	2	CRC			

Table 21. Get data ready I2C command description

5.7.4 Read Measured Values SEN66 Applies to: SEN66 **Description:** Returns the measured values. The command **Get Data Ready** can be used to check if new data is available since the last read operation. If no new data is available, the previous values will be returned. If no

available since the last read operation. If no new data is available, the previous values will be returned. If no data is available at all (e.g. measurement not running for at least one second), all values will be at their upper limit (0xFFFF for uint16, 0x7FFF for int16).

Read Measured Values S	SEN66		
Command ID	0x0300)	
Read Delay	20 ms		
Post Processing Time	0 ms		
Max. RX Data With CRC	27 Byte	es	
TX Data	None		
	В	yte#	Description
	0	MSB	Mass Concentration PM1.0: uint16
	1	LSB	Value is scaled with factor 10: PM1.0 [μ g/m3] = value / 10
	2	CRC	Note: If this value is unknown, 0xFFFF is returned.
	3	MSB	Mass Concentration PM2.5: uint16
	4	LSB	Value is scaled with factor 10: PM2.5 [μ g/m3] = value / 10
	5	CRC	Note: If this value is unknown, 0xFFFF is returned.
	6	MSB	Mass Concentration PM4.0: uint16
	7	LSB	Value is scaled with factor 10: PM4.0 [μ g/m3] = value / 10
	8	CRC	Note: If this value is unknown, 0xFFFF is returned.
	9	MSB	Mass Concentration PM10.0: uint16
	10	LSB	Value is scaled with factor 10: PM10.0 [μ g/m3] = value / 10
	11	CRC	Note: If this value is unknown, 0xFFFF is returned.
	12	MSB	Ambient Humidity: int16
	13	LSB	Value is scaled with factor 100: RH [%] = value / 100
RX Data	14	CRC	Note: If this value is unknown, 0x7FFF is returned.
TX Data	15	MSB	Ambient Temperature: int16
	16	LSB	Value is scaled with factor 200: T [°C] = value / 200
	17	CRC	Note: If this value is unknown, 0x7FFF is returned.
	18	MSB	VOC Index: int16
	19	LSB	Value is scaled with factor 10: VOC Index = value / 10
	20	CRC	Note: If this value is unknown, 0x7FFF is returned.
	21	MSB	NOx Index: int16
	22	LSB	Value is scaled with factor 10: NOx Index = value / 10
	23	CRC	Note: If this value is unknown, 0x7FFF is returned. During the
	24	MSB	first 19, 11 seconds after power-on or device reset, this value will be 0x7FFF as well.
		IVIOD	CO2: uint16
	25	LSB	CO2 concentration [ppm]
	26	CRC	Note: If this value is unknown, 0xFFFF is returned. During the first
			5x6 seconds after power-on or device reset, this value will be

Table 22. Read measured values SEN66 I2C command description

5.7.5 Read Number Concentration Values Applies to: SEN63C, SEN65, SEN66, SEN68 Description:

Returns the measured number concentration values. The command **Get Data Ready** can be used to check if new data is available since the last read operation. If no new data is available, the previous values will be returned. If no data is available at all (e.g. measurement not running for at least one second), all values will be at their upper limit (0xFFFF for uint16).

Read Number Concentration Values					
Command ID	0x0316				
Read Delay	20 ms				
Post Processing Time	0 ms				
Max. RX Data With CRC	15 Byte	es			
TX Data					
	В	yte #	Description		
	9	MSB	Number Concentration PM0.5: uint16		
	2		Value is scaled with factor 10: PM0.5 [particles/cm3] = value /		
	3	MSB-	Note: If this value is unknown, 0xFFFF is returned.		
		<u> Labe</u>	Number Concentration PM1.0: uint16		
	6	MSB			
	8	Ł <u>R</u> B	Value is scaled with factor 10: PM1.0 [particles/cm3] = value /		
	9	MSB	Note: If this value is unknown, 0xFFFF is returned.		
	119	L RB	Number Concentration PM2.5: uint16		
RX Data	12	MSB	Value is scaled with factor 10: PM2.5 [particles/cm³] = value /		
	1 3	LRB	Note: If this value is unknown, 0xFFFF is returned.		
			Number Concentration PM4.0: uint16		
			Value is scaled with factor 10: PM4.0 [particles/cm3] = value /		
			Note: If this value is unknown, 0xFFFF is returned.		
			Number Concentration PM10.0: uint16		
			Value is scaled with factor 10: PM10.0 [particles/cm3] = value /		
			Note: If this value is unknown, 0xFFFF is returned.		

Table 23. Read number concentration values I2C command description

5.7.6 Read Measured Raw Values SEN66

Applies to: SEN66

Description: Returns the measured raw values. The command **Get Data Ready** can be used to check if new data is available since the last read operation. If no new data is available, the previous values will be returned. If no data is available at all (e.g. measurement not running for at least one second), all values will be at their upper limit (0xFFFF for uint16, 0x7FFF for int16).

Read Measured Raw Values					
Command ID	0x0405				
Read Delay	20 ms				
Post Processing Time	0 ms				
Max. RX Data With CRC	15 Byte	es			
TX Data	None				
	В	yte#	Description		
	0	MSB	Raw Humidity: int16		
	1	LSB	Value is scaled with factor 100: RH [%] = value / 100		
	2	CRC	Note: If this value is unknown, 0x7FFF is returned.		
	3	MSB	Raw Temperature: int16		
	4	LSB	Value is scaled with factor 200: T [°C] = value / 200		
	5	CRC	Note: If this value is unknown, 0x7FFF is returned.		
	6	MSB	Raw VOC: uint16		
	7	LSB	Raw measured VOC ticks without scale factor.		
	8	CRC	Note: If this value is unknown, 0xFFFF is returned.		
RX Data	9	MSB	Raw NOx:uint16		
	10	LSB	Raw measured NOx ticks without scale factor.		
			Note: If this value is unknown, 0xFFFF is returned. During the		
	11	CRC	first 1011 seconds after power-on or device reset, this value		
	10	MCD	will be 0xFFFF as well.		
	12	MSB	Raw CO2: uint16		
	13	LSB	Not interpolated CO2 concentration [ppm] updated every five		
			seconds.		
	14	CRC	Note: If this value is unknown, OxFFFF is returned, During the first 5::6 seconds after power on or device reset, this value will be 0xFFFF as well.		

Table 24. Read measured raw values SEN66 I2C command description

5.7.7 Start Fan Cleaning

Applies to: SEN63C, SEN65, SEN66, SEN68

Description: This command triggers fan cleaning. The fan is set to the maximum speed for 10 seconds and then automatically stopped. This command is only available in idle mode. Wait at least 10s after this command before starting a measurement.

Start Fan Cleaning				
Command ID	0x5607			
Post Processing Time	20 ms			
Max. RX Data With CRC	0 Bytes			
TX Data	None			
RX Data	None			

Table 25. Start fan cleaning I2C command description

5.7.8 Set Temperature Offset Parameters

Applies to: SEN63C, SEN65, SEN66, SEN68

Description: This command allows to compensate temperature effects of the design-in at customer side by applying custom temperature offsets to the ambient temperature. The compensated ambient temperature is calculated as follows:

T_Ambient_Compensated = T_Ambient + (slope * T_Ambient) + offset

Where slope and $_{offset}$ are the values set with this command, smoothed with the specified time constant. All temperatures ($_{T_Ambient_Compensated}$, $_{T_Ambient_Compensated}$) are represented in °C. There are 5 temperature offset slots available that all contribute additively to $_{T_Ambient_Compensated}$. The default values for the temperature offset parameters are all zero, meaning that $_{T_Ambient_Compensated}$ is equal to $_{T_Ambient_by}$ default. The parameters can be changed in any state of the device, i.e. both in idle mode and in measure mode. For more details on how to compensate the temperature on the SEN6x platform, refer to "Temperature Acceleration and Compensation Instructions for SEN6x" [2].

Note: This configuration is volatile, i.e. the parameters will be reverted to their default value of zero after a device reset.

Set Temperature Offset Parameters			
Command ID	0x60B2		
Post Processing Time	20 ms		
Max. RX Data With CRC	0 Bytes	;	
	В	yte#	Description
	0	MSB	Offset: int16
	1	LSB	Constant temperature offset scaled with factor 200 (T [°C] =
	2	CRC	value / 200).
	3	MSB	Slope: int16
	4	LSB	Normalized temperature offset slope scaled with factor 10000
	5	CRC	(applied factor = value / 10000).
	6	MSB	Time Constant: uint16 The time constant determines how fast the new slope and
TX Data	7	LSB	
			offset will be applied. After the specified value in seconds,
			63% of the new slope and offset are applied. A time constant
	8	CRC	of zero means the new values will be applied immediately
	9	-	(within the next measure interval of 1 second).
	10	LSB	Slot: uint16
	11	CRC	The temperature offset slot to be modified. Valid values are 0 4. If the value is outside this range, the parameters will
			not be applied.
RX Data	None	l	

Table 26. Set temperature offset parameters I2C command description

5.7.9 Get VOC Algorithm Tuning Parameters

Applies to: SEN65, SEN66, SEN68

Description: Gets the parameters to customize the VOC algorithm.

Get VOC Algorithm Tuning Parameters					
Command ID	0x60D0	0x60D0			
Read Delay	20 ms				
Post Processing Time	0 ms				
Max. RX Data With CRC	18 Byte	es			
TX Data	None				
	В	yte #	Description		
	9	MSB CRC	Index Offset: int16 VOC index representing typical (average) conditions.		
	3	MSB	Learning Time Offset Hours: int16		
	4	LSB	Time constant to estimate the VOC algorithm offset from the history in hours. Past events will be forgotten after about twice		
	5	CRC	the learning time.		
	6 7 8	— MSB— LSB CRC	Learning Time Gain Hours: int16 Time constant to estimate the VOC algorithm gain from the		
	9	MSB	history in hours. Past events will be forgotten after about twice the learning time.		
	10	LSB	Gating Max Duration Minutes: int16		
RX Data	11	CRC	Maximum duration of gating in minutes (freeze of estimator		
	13	— MSB LSB	during high VOC index signal). Zero disables the gating.		
	14	CRC	Std Initial: int16		
	15	MSB	Initial estimate for standard deviation. Lower value boosts		
	16 17	LSB CRC	events during initial learning period but may result in larger		
			device-to-device variations.		
			Gain factor to annulify or to attenuate the VOC index output.		

Table 27. Get VOC algorithm tuning parameters I2C command description

5.7.10 Set VOC Algorithm Tuning Parameters Applies to: SEN65, SEN66, SEN68 **Description:** Sets the parameters to customize the VOC algorithm. This command is available only in idle mode. In measure mode, this command has no effect. In addition, it has no effect if at least one parameter is outside the specified range. This configuration is volatile, i.e. the parameters will be reverted to their default values after a device reset.

Set VOC Algorithm Tuning	Parameters			
Command ID	0x60D0			
Post Processing Time	20 ms			
Max. RX Data With CRC	0 Bytes			
	Byte #		Description	
	0	MSB	Index Offset: int16 Range: 1250	
	1	LSB	VOC index representing typical (average) conditions. Allowed	
	2	CRC	values are in range 1250. The default value is 100.	
	3	MSB	Learning Time Offset Hours: int16 Range: 11000	
	4	LSB	Time constant to estimate the VOC algorithm offset from the history in hours. Past events will be forgotten after about	
	5	CRC	twice the learning time Allowed values are in range 11000.	
	6	MSB	Learning Time Gain Hours: int16 Range: 11000	
	7	LSB	Time constant to estimate the VOC algorithm gain from the	
	8	CRC	history in hours. Past events will be forgotten after about twice the learning time Allowed values are in range 11000.	
TX Data	9	MSB	Gating Max Duration Minutes: int16 Range: 03000	
	10	LSB	Maximum duration of gating in minutes (freeze of estimator	
	11	CRC	during high VOC index signal). Set to zero to disable the	
	12	MSB	gating Allowed values are in range 03000. The default value	
			Std Initial: int16 Range: 105000	
	13	LSB	Initial estimate for standard deviation. Lower value boosts	
	14	CRC	events during initial learning period but may result in larger	
	15	MSB	devise to de la range de la ra	
	16	LSB	Gain Factor: int16 Range: 11000	
	17	CRC	Gain factor to amplify or to attenuate the VOC index output.	
			Allowed values are in range 11000. The default value is 230.	
			1	
RX Data	None			

Table 28. Set VOC algorithm tuning parameters I2C command description

5.7.11 Get NOx Algorithm Tuning Parameters

Applies to: SEN65, SEN66, SEN68

Description: Gets the parameters to customize the NOx algorithm.

Get NOx Algorithm Tuning	y Param	Parameters			
Command ID	0x60E2	0x60E1			
Read Delay	20 ms	20 ms			
Post Processing Time	0 ms				
Max. RX Data With CRC	18 Byte	es			
TX Data	None	None			
	В	yte#	Description		
	0	MSB LSB	Ndex Offset: int16 NOX index representing typical (average) conditions.		
	2	L CRC	Learning Time Offset Hours: int16		
	3	MSB	Time constant to estimate the NOx algorithm offset from the history in hours. Past events will be forgotten after about twice		
	4	LSB	the learning time.		
	5	CRC			
	6	MSB	Learning Time Gain Hours: int16 The time constant to estimate the NOx algorithm gain from		
	7	LSB	the history has no impact for NOx. This parameter is still in		
	8	CRC	place for consistency reasons with the VOC tuning parameters		
	9	MSB			
RX Data	10	LSB	Gating Max Duration Minutes: int16		
RA Dala	11	CRC	Maximum duration of gating in minutes (freeze of estimator		
			during high NOx index signal). Zero disables the gating.		
	13 14	MSB CDC	Std Initial: int16		
	14 15	CRC MSB	The initial estimate for standard deviation has no impact for		
	15 16 17		NOx. This parameter is still in place for consistency reasons with the VOC tuning parameters command.		
	17	LSB CRC	Gain factor to amplify or to attenuate the NOx index output.		
			Gain ractor to ampiny or to attenuate the NOx index output.		
			-		
			-		

Table 29. Get NQ algorithm tu ning parameters I $\rm \^{C}$ command description

5.7.12 Set NOx Algorithm Tuning Parameters

Applies to: SEN65, SEN66, SEN68

Description: Sets the parameters to customize the NOx algorithm. This command is available only in idle mode. In measure mode, this command has no effect. In addition, it has no effect if at least one parameter is outside the specified range.

This configuration is volatile, i.e. the parameters will be reverted to their default values after a device reset.

Set NOx Algorithm Tuning	Param	Parameters			
Command ID	0x60E1				
Post Processing Time	20 ms				
Max. RX Data With CRC	0 Bytes				
	Byte #		Description		
	0	MSB	Index Offset: int16 Range: 1250		
	1	LSB	NOx index representing typical (average) conditions. Allowed		
	2	CRC	values are in range 1250. The default value is 1.		
	3	MSB	Learning Time Offset Hours: int16 Range: 11000		
	4	LSB	Time constant to estimate the NOx algorithm offset from the history in hours. Past events will be forgotten after about		
	5	CRC	twice the learning time. Allowed values are in range 11000.		
	6	MSB	Learning Time Gain Hours: int16 Range: 11000		
	7	LSB	The time constant to estimate the NOx algorithm gain from		
	8	CRC	the history has no impact for NOx. This parameter is still in		
	9	MSB	Place for consistency reasons with the VOC tuning parameters		
TX Data			Gating Max Duration Minutes: int16 Range: 03000		
	10	LSB	Maximum duration of gating in minutes (freeze of estimator		
	11	CRC	during high NOx index signal). Set to zero to disable the		
	12	MSB_	gating Allowed values are in range 03000. The default value		
	10		Std Initial: int16 Range: 105000		
	13	LSB	The initial estimate for standard deviation parameter has no		
	14	CRC	impact for NOx. This parameter is still in place for consistency		
	15	MSB	reasons with the WOC tuning parameters command. This		
	16	LSB	Gain Factor: int16 Range: 11000		
	17	CRC	Gain factor to amplify or to attenuate the NOx index output.		
			Allowed values are in range 11000. The default value is 230.		
RX Data	None				

Table 30. Set NQ algorithm tu ning parameters I€ command description

5.7.13 Set Temperature Acceleration Parameters Applies to: SEN63C, SEN65, SEN66, SEN68

Description: This command allows to set custom temperature acceleration parameters of the RH/T engine. Overwrites the default temperature acceleration parameters of the RH/T engine with custom values. The parameters can only be set in idle mode. This configuration is volatile, *i.e.* the parameters will be reverted to their default values after a device reset.

For more details on how to compensate the temperature on the SEN6x platform, refer to "Temperature Acceleration and Compensation Instructions for SEN6x" [2].

Set Temperature Acceleration Parameters					
Command ID	0x6100	0x6100			
Post Processing Time	20 ms				
Max. RX Data With CRC	0 Bytes	6			
	B	yte#	Description		
	0 2	MSB CRC	K: uint16 Filter constant K scaled with factor 10 (K = value / 10).		
	3	MSB			
	4 5	LSB CRC	P: uint16 Filter constant P scaled with factor 10 (P = value / 10).		
TX Data	6	MSB	- The constant is seared with factor to (i = value / 10).		
TA Dala	7 8	LSB CRC			
	9	MSB	T1: uint16 Time constant T1 scaled with factor 10 (T1 [s] = value / 10).		
	10 11	LSB CRC			
			T2: uint16 Time constant T2 scaled with factor 10 (T2 [s] = value / 10).		
RX Data	None				

Table 31. Set temperature acceleration parameters I2C command description

5.7.14 Get VOC Algorithm State Applies to: SEN65, SEN66, SEN68 Description: Allows backup of the VOC

algorithm state to resume operation after a power cycle or device reset,

skipping initial learning phase. By default, the VOC Engine is reset, and the algorithm state is retained if a measurement is stopped and started again. If the VOC algorithm state shall be reset, a device reset, or a power cycle can be executed.

Gets the current VOC algorithm state. This data can be used to restore the state with the **Set VOC Algorithm State** command after a short power cycle or device reset.

This command can be used either in measure mode or in idle mode (which will then return the state at the time when the measurement was stopped). In measure mode, the state can be read each measure interval to always have the latest state available, even in case of a sudden power loss.

Get VOC Algorithm State				
Command ID	0x6181			
Read Delay	20 ms			
Post Processing Time	0 ms			
Max. RX Data With CRC	12 Byte	es		
TX Data	None			
	Byte #		Description	
	0	Byte 0		
	1	Byte 1		
RX Data	2	CRC	State: hytearray<8>	
NA Dala	9	Byte 6	State: byteanray(8) State.	
	10	Byte 7		
	11	CRC		

Table 32. Get VOC algorithm state I2C command description

5.7.15 Set VOC Algorithm State Applies to: SEN65, SEN66, SEN68 Description: Allows restoration of the

VOC algorithm state to resume operation after a power cycle or device

reset, skipping initial learning phase. By default, the VOC Engine is reset, and the algorithm state is retained if a measurement is stopped and started again. If the VOC algorithm state shall be reset, a device reset, or a power cycle can be executed.

Sets the VOC algorithm state previously received with the **Get VOC Algorithm State** command. This command is only available in idle mode and the state will be applied only once when starting the next measurement. In measure mode, this command has no effect.

Set VOC Algorithm State					
Command ID	0x6181	0x6181			
Post Processing Time	20 ms				
Max. RX Data With CRC	0 Bytes	6			
	В	yte#	Description		
	0	Byte 0			
	1	Byte 1			
TX Data	2	CRC	State: hytearray(8)		
TA Data	9	Byte 6	State: bytearray<8> VOC algorithm state to restore.		
	10	Byte 7			
	11	CRC			
		0.70			
RX Data	None				

Table 33. Set VOC algorithm state I2C command description

5.7.16 Perform Forced CO2 Recalibration Applies to: SEN63C, SEN66

Description: Execute the forced recalibration (FRC) of the CO2 signal. See the datasheet of the SCD4x sensor

for details how the forced recalibration shall be used [3].

Note: After power-on wait at least 1000 ms and after stopping a measurement 600 ms before sending this command. This command is not available in measure mode. The recalibration procedure will take about 500 ms to complete, during which time no other functions can be executed.

Perform Forced CO2 Recalibration					
Command ID	0x6707	0x6707			
Read Delay	500 ms	5			
Post Processing Time	0 ms				
Max. RX Data With CRC	3 Bytes	S			
	В	yte#	Description Target CO2 Concentration: uint16 Target CO2 concentration [ppm] of the test setup.		
TX Data	0	MSB	Target CO2 concentration [ppm] of the test setup.		
17 Data	2	Ł RB	Description		
			Correction: uint16		
	В	yte#	Correction value as received from the SCD [ppm CO2]. FRC		
	0	MSB	correction (ppm CO2) is return value or PX8000, if the		
RX Data	1	LSB	Toodiistatori rias railea triis valde is oxi 1111.		
	2	CRC			

Table 34. Perform forced CO₂ recalibration € command description

5.7.17 Get CO2 Sensor Automatic Self Calibration Applies to: SEN63C, SEN66

Description: Gets the status of the CO2 sensor automatic self-calibration (ASC). The CO2 sensor

supports

automatic self-calibration (ASC) for long-term stability of the CO2 output. This feature can be enabled or disabled. By default, it is enabled. This command is not available in measure mode. This configuration is

volatile, i.e. the parameter will be reverted to its default value after a device restart.

Get CO2 Sensor Automatic Self Calibration				
Command ID	0x6711			
Read Delay	20 ms			
Post Processing Time	0 ms			
Max. RX Data With CRC	3 Bytes	3		
TX Data	None			
	Byte #		Description	
	0		Fadding: byte; always 0x00.	
			Status: bool	
RX Data			Is set true (0x01) if the automatic self-calibration is enabled or	
	1		false (0x00) if the automatic self-calibration is disabled.	
			CRC for the previous two bytes.	
	2	CRC		

Table 35. Get CO₂ sensor automatic self calibration fC command description

5.7.18 Set CO2 Sensor Automatic Self Calibration Applies to: SEN63C, SEN66

Description: Sets the status of the CO2 sensor automatic self-calibration (ASC). The CO2 sensor

supports

automatic self-calibration (ASC) for long-term stability of the CO2 output. This feature can be enabled or disabled. By default, it is enabled. This command is not available in measure mode. This configuration is

volatile, i.e. the parameter will be reverted to its default value after a device restart.

Set CO2 Sensor Automatic Self Calibration					
Command ID	0x6712	0x6711			
Post Processing Time	20 ms				
Max. RX Data With CRC	0 Byte:	0 Bytes			
	Byte #		Description		
	0		Badding: blytte ⁸ , always 0x00.		
			Status: bool		
TX Data	1		Set to true (0x01) to enable or false (0x00) to disable the		
			automatic CO2 measurement self-calibration feature.		
			CRC for the previous two bytes.		
	2	CRC			
RX Data	None				

Table 36. Set CQ sensor automatic self-calibration I2C command description

5.7.19 Get Ambient Pressure Applies to: SEN63C, SEN66 Description: Gets the ambient pressure value.

The ambient pressure can be used for pressure compensation

in the CO2 sensor. This command can be used in any state of the device, i.e. both in idle mode and in measure mode.

Get Ambient Pressure			
Command ID	0x6720		
Read Delay	20 ms		
Post Processing Time	0 ms		
Max. RX Data With CRC	3 Bytes		
TX Data	None		
	Byte #		Description
RX Data	9	MSB	Ambient Pressure: uint16 Currently used ambient pressure [hPa] for pressure
	2	CRC	compensation.
			·

Table 37. Get ambient pressure I2C command description

5.7.20 Sets Ambient Pressure Applies to: SEN63C, SEN66 Description: Sets the ambient pressure value.

The ambient pressure can be used for pressure compensation in

the CO2 sensor. Setting an ambient pressure overrides any pressure compensation based on a previously set sensor altitude. Use of this command is recommended for applications experiencing significant ambient pressure changes to ensure CO2 sensor accuracy. Valid input values are between 700 to 1'200 hPa. The default value is 1013 hPa. This command can be used in any state of the device, i.e. both in idle mode and in measure

mode.

This configuration is volatile, i.e. the parameter will be reverted to its default value after a device restart.

Set Ambient Pressure			
Description	Sets ambient pressure value.		
Command ID	0x6720)	
Post Processing Time	20 ms		
Max. RX Data With CRC	0 Bytes		
	Byte #		Description
TX Data	0	MSB	Ambient Pressure: uint16
TA Bala	1	LSB	Ambient pressure [hPa] to be used for pressure
	2	CRC	compensation.
RX Data	None		

Table 38. Set ambient pressure I2C command description

5.7.21 Get Sensor Altitude Applies to: SEN63C, SEN66 **Description:** Gets the current sensor altitude. The sensor altitude can be used for pressure compensation in

the CO2 sensor. Getting the sensor altitude must be done in idle mode. The default sensor altitude value is set to 0 meters above sea level. Valid input values are between 0 and 3000m.

Get Sensor Altitude			
Command ID	0x6736		
Read Delay	20 ms		
Post Processing Time	0 ms		
Max. RX Data With CRC	3 Bytes		
TX Data	None		
	Byte #		Description
RX Data	Ą	MSB CRC	Altitude: uint16
NA Dala	2	CRC	Current sensor altitude [m].

Table 39. Get sensor altitude I2C command description

5.7.22 Set Sensor Altitude Applies to: SEN63C, SEN66 **Description:** Sets the current sensor altitude. The sensor altitude can be used for pressure compensation in the

CO2 sensor. Setting the sensor altitude must be done in idle mode. The default sensor altitude value is set to 0 meters above sea level. Valid input values are between 0 and 3000m.

This configuration is volatile, i.e. the parameter will be reverted to its default value after a device reset.

Set Sensor Altitude		
Command ID	0x6736	
Post Processing Time	20 ms	
Max. RX Data With CRC	0 Bytes	
	Byte #	Description
TX Data	0 MSB 1 LSB 2 CRC	Sensor attitude [m], valid input between 0 and 3000m.
RX Data	None	

Table 40. Set sensor altitude I2C command description

5.7.23 Activate SHT Heater Applies to: SEN63C, SEN65, SEN66, SEN68 Description: This command allows

you to use the inbuilt heater in SHT sensor to reverse creep at high humidity.

This command activates the SHT sensor heater with 200mW for 1s. The heater is then automatically deactivated

again. This command is only available in idle mode. Wait at least 20s after this command before starting a measurement to get coherent temperature values (heating consequence to disappear).

Activate SHT Heater	
Command ID	0x6765
Post Processing Time	1300 ms
Max. RX Data With CRC	0 Bytes
TX Data	None
RX Data	None

Table 41. Activate SHT heater I2C command description

5.7.24 Get Product Name

Applies to: SEN63C, SEN65, SEN66, SEN68

Description: Gets the product name from the device.

Get Product Name					
Command ID	0xD01	0xD014			
Read Delay	20 ms				
Post Processing Time	0 ms				
Max. RX Data With CRC	48 Byt	es			
TX Data	None				
	Byte #		Description		
	0	Char 0			
	1	Char 1			
RX Data	2	CRC	Product Name: string<32> Null-terminated ASCII string containing the product name. Up		
RX Dala	45				
	45	Char 30	to 32 characters can be read from the device.		
	46 47	Char 31			
		CRC			

Table 42. Get product name I2C command description

5.7.25 Get Serial Number

Applies to: SEN63C, SEN65, SEN66, SEN68

Description: Gets the serial number from the device.

Get Serial Number				
Command ID	0xD033			
Read Delay	20 ms			
Post Processing Time	0 ms			
Max. RX Data With CRC	48 Byt	es		
TX Data	None			
	Byte #		Description	
	0	Char 0		
	1	Char 1		
RX Data	2	CRC	Serial Number: string<32> Null-terminated ASCII string containing the serial number. Up	
RA Dala				
	45	Char 30	to 32 characters can be read from the device.	
	46	Char 31		
	47	CRC		

Table 43.Get serial number I2C command description

5.7.26 Get Version

Applies to: SEN63C, SEN65, SEN66, SEN68

Description: Gets the version information for the hardware, firmware and communication protocol.

Get Version				
Command ID	0xD100			
Read Delay	20 ms			
Post Processing Time	0 ms			
Max. RX Data With CRC	12 Byte	es		
TX Data	None			
	В	yte#	Description	
	0	_	Firmware Major: uint8 Firmware major version number.	
		-	Firmware Minor: uint8	
	1	_	Firmware minor version number.	
	2	CRC	CRC for the previous two bytes.	
	_	00	Firmware Debug: bool	
			Firmware debug state. If the debug state is set, the firmware is	
	3	-	in development.	
			Hardware Major: uint8	
	456	CRC	Hardware major version number. CRC for the previous two bytes.	
RX Data			Hardware Minor: uint8	
RA Dala			Hardware minor version number.	
			Protocol Major: uint8	
			Protocol major version number.	
	7		CRC for the previous two bytes.	
	8	- CRC	Protocol Minor: uint8 Protocol minor version number.	
	9	-	Padding: uint8	
			Padding byte, ignore this.	
			CRC for the previous two bytes.	
	10	_		
	11	- CRC		

Table 44. Get version I2C command description

5.7.27 Read Device Status Applies to: SEN63C, SEN65, SEN66, SEN68 **Description:** Reads the current device status. Use this command to get detailed information about the device status. The device status is encoded in flags.

Each device status flag represents a single bit in a 32-bit integer value. If more than one error is present, the device status register value is the sum of the corresponding flag values. For details about the available flags, refer to the device status flags documentation.

Note: The status flags of type "Error" are sticky, i.e. they are not cleared automatically even if the error condition polyper exists. So, they can only be cleared manually with **Read And Clear Device Status** or with a **Reset.** All other flags are not sticky, i.e. they are cleared automatically if the trigger condition disappears.

Read Device Status			
Command ID	0xD206		
Read Delay	20 ms		
Post Processing Time	0 ms		
Max. RX Data With CRC	6 Bytes	3	
TX Data	None		
	Byte #		Description
	0	MSB	
	1	-	Davidae Ctature wint22
RX Data	3	CRC	Device Status: uint32 Device status (32 flags as an integer value). For details, please refer to the device status flags documentation.
	4	LSB	Telei to the device status hags documentation.
	5	CRC	

Table 45. Read device status I2C command description

5.7.28 Read And Clear Device Status

Applies to: SEN63C, SEN65, SEN66, SEN68

Description: Reads the current device status (like command Read Device Status) and afterwards clears all flags.

Read And Clear Device Status			
Command ID	0xD210		
Read Delay	20 ms		
Post Processing Time	0 ms		
Max. RX Data With CRC	6 Bytes		
TX Data	None		
	Byte #		Description
	0	MSB	
	1	-	Device Status: uint32
RX Data	2	CRC	Device status (32 flags as an integer value) before clearing it.
	3	-	For details, please refer to the device status flags
	4	LSB	documentation.
	5	CRC	

Table 46. Read and clear device status I2C command description

5.7.29 Device Reset

Applies to: SEN63C, SEN65, SEN66, SEN68

Description: Executes a reset on the device. This has the same effect as a power cycle.

Device Reset	
Command ID	0xD304
Post Processing Time	1200 ms
Max. RX Data With CRC	0 Bytes
TX Data	None
RX Data	None

Table 47. Device reset I2C command description

5.8 Checksum Calculation (CRC)

Applies to: SEN60, SEN63C, SEN65, SEN66, SEN68 The 8-bit CRC checksum transmitted after each data word is generated by a CRC algorithm. Its properties are displayed in **Table 48**. The CRC covers the contents of the two previously transmitted data bytes. To calculate the checksum, only these two previously transmitted data bytes are used. Note that command words are not followed by CRC.

Property	Value	Example code (C/C++)
Name	CRC-8-Dallas/Maxim	#define CRC8_POLYNOMIAL 0x31 #define CRC8_INIT 0xFF
Width	8 bits	uint8_t sensirion_generate_crc(const uint8_t* data, uint16_t count) {
Protected Data	read and/or write data	uint16_t current_byte;
Polynomial	0x31 (x8+x5+x4+1)	uint8_t crc = CRC8_INIT;
Initialization	0xFF	uint8_t crc_bit; /* calculates 8-Bit checksum with given polynomial */
Reflect input	No	for (current_byte = 0; current_byte < count; ++current_byte) {
Reflect output	No	<pre>crc ^= (data[current_byte]); for (crc_bit = 8; crc_bit > 0;crc_bit) {</pre>
Final XOR	0x00	if (crc & 0x80) crc = (crc << 1) ^ CRC8 POLYNOMIAL;
Examples	CRC (0xBEEF) = 0x92	else crc = (crc << 1);

Table 48. I2C CRC properties

6 Technical Drawing

6.1 Package Outline

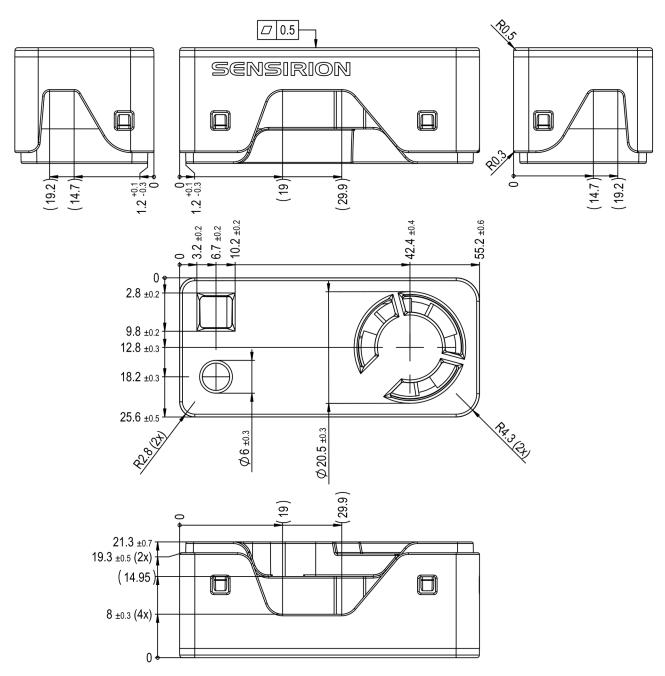


Figure 10. Technical Drawing of the SEN6x platform

6.2 Product Label

All SEN6x sensors include a 22mm x 8mm label as seen in **Figure 11**. For more information on the content, see **Table 49**.

Label Design	Label Content	Description
■評画 SEN6xx — SIN — T 無達数 EEEEEEEE ■ 記述 FFFFFFF	QR Code	QR code containing the 16-digit HEX serial number
	SEN6xx-SIN-T	Material description as in Table 50
	EEEEEEE	First 8 digits of the 16-digit HEX code
	FFFFFFF	Last 8 digits of the 16-digit HEX code

Table 49. Label information

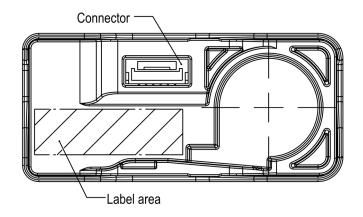


Figure 11. Label position on SEN6x

7 Ordering Information

Material Description	Material Number	Sensor Outputs	Quantity
SEN60-SIN-T	3.001.163	Particulate Matter	420pcs per box, 7 trays, 60pcs per tray
SEN63C-SIN-T	3.001.197	Particulate MatterRelative HumidityTemperatureCO2	420pcs per box, 7 trays, 60pcs per tray
SEN65-SIN-T	3.001.203	 Particulate Matter Relative Humidity Temperature VOC Index NOx Index 	420pcs per box, 7 trays, 60pcs per tray
SEN66-SIN-T	3.001.030	 Particulate Matter Relative Humidity Temperature VOC Index NOx Index CO2 	420pcs per box, 7 trays, 60pcs per tray
SEN68-SIN-T	3.001.198	 Particulate Matter Relative Humidity Temperature VOC Index NOx Index Formaldehyde 	420pcs per box, 7 trays, 60pcs per tray

Table 50. Ordering information

8 Bibliography

- [1] NXP, "UM10204 I2C-bus specification and user manual Rev.7.0," 1 October 2021. [Online]. Available: https://www.nxp.com/docs/en/user-guide/UM10204.pdf. [Accessed 04 October 2024].
- [2] Sensirion, "Temperature Acceleration and Compensation Instructions for SEN6x," October 2024. [Online]. Available: www.sensirion.com.
- [3] Sensirion AG, "Datasheet SCD4x," September 2024. [Online]. Available: www.sensirion.com.
- [4] Sensirion AG, "Sensirion Environmental Node Sensor Specification Statement Rev.2," November 2024. [Online]. Available: www.sensirion.com.
- [5] Sensirion, "Sensirion Humidity Sensor Specification Statement," 19 April 2021. [Online]. Available: www.sensirion.com. [Accessed 12 October 2024].
- [6] Sensirion, "SGP40 Quick Testing Guide," March 2021. [Online]. Available: www.sensirion.com. [Accessed 12 October 2024].

9 Revision History

Date	Version	Pages	Changes
March 2023	V0.1	all	Initial version
October 2023	V0.2	all	Update information, switch to 3.3V
July 2024	V0.3	all	Update information, switch to 1x3.3V+-5%
September 2024	V0.4	all	Add ordering information, add technical drawing, add SEN63C
October 2024	V0.5	all	Add Interface description, add label information

Important Notices

Warning, Personal Injury Do not use this product as safety or emergency stop devices or in any other application where

failure of the product could

resulting, personal injury. Do not use this product for applications other than its intended and authorized use. Before handling, using or servicing this product, please consult the data sheet and application notes. Failure to comply with

these

instructions could result in death or serious injury.

If the Buyer shall purchase or use SENSIRION products for any unintended or unauthorized application, Buyer shall defend, independing and hold harmless SENSIRION and its officers, employees, subsidiaries, affiliates and distributors against all claims,

damages and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if SENSIRION shall be allegedly negligent with respect to the design or the manufacture of the product.

ESD Precautions

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take customary and statutory ESD precautions when handling this product. See application note "ESD, Latchup"

and EMC" for more information.

Warrantv

SENSIRION warrants solely to the original purchaser of this product for a period of 12 months (one year) from the date of delivery that this product shall be of the quality, material and workmanship defined in SENSIRION's published specifications of the product. Within such period, if proven to be defective, SENSIRION shall repair and/or replace this product, in SENSIRION's discretion, free notice in writing descriping the defects shall be given to SENSIRION within fourteen (14) days after their appearance; of charge to the Buyer provided that of the count, to sensing the defects shall be found, to sensing the defects shall be round, to sensing the defects shall be round, to sensing the found, t

- . the defective product shall be returned to SENSIRION's factory at the Buyer's expense; and
- . the warranty period for any repaired or replaced product shall be limited to the unexpired portion of the original period.

This warranty does not apply to any equipment which has not been installed and used within the specifications recommended by SENSIRION for the intended and proper use of the equipment. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH

SENSIRION MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE PRODUCT. ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE, ARE EXPRESSLY EXCLUDED AND DECLINED. SENSIRION is only liable for defects of this product arising under the conditions of operation provided for in the data sheet and proper use of the goods. SENSIRION explicitly disclaims all warranties, express or implied, for any period during which the goods

are operated or stored not in accordance with the technical specifications.

SENSIRION does not assume any liability arising out of any application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. All operating parameters, including without limitation recommended parameters, must be validated for each customer's applications by customer's technical experts. Recommended parameters can and do vary in different applications. SENSIRION reserves the right, without further notice, (i) to change the product specifications and/or the information in this

document and (ii) to improve reliability, functions and design of this product.

Headquarters and Subsidiaries

Laubisruetistr. 50 CH-8712 Staefa ZH

Switzerland

phone: +41 44 306 40 00

fax: +41 44 306 40 30 info@sensirion.com www.sensirion.com

Sensirion Taiwan Co. Ltd phone: +886 2 2218-6779 info@sensirion.com www.sensirion.com Sensirion Inc., USA
phone: +1 312 690 5858
info-us@sensirion.com
www.sensirion.com
Sensirion Japan Co. Ltd.
phone: +81 45 270 4506
info-jp@sensirion.com
www.sensirion.com/jp

Sensirion Korea Co. Ltd. phone: +82 31 337 7700~3 info-kr@sensirion.com www.sensirion.com/kr Sensirion China Co. Ltd. phone: +86 755 8252 1501 info-cn@sensirion.com www.sensirion.com/cn

To find your local representative, please visit www.sensirion.com/distributors

Copyright © 2024, by SENSIRION. CMOSensi® a trademark of Sensirion. All rights reserved